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1. INTRODUCTION AND MAIN RESULTS

In this note we consider the zero-finding problem for a homogeneous
polynomial system,

f: (Dn+1 _ (Cm’

with m<n, f=(f1, ., fn), fi € #5: the space of homogeneous polynomials
fi: C*+1 = C with degree( f;) =d;. The well-determined (m =#n) and under-
determined (m <n) cases are considered together. We also let D =maxd,,
d=(dy, ... d,), and A=Ay x --- X Ay .

The projective Newton method has been introduced by Shub in [6] and
is defined by

Ny(x)=x—(Df(x)| 1) 7" f(x)
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when m = n, with Df(x)| . the restriction at x* of the derivative of f at x.
Here x* denotes the space orthogonal to x in C"*!. When m <n, we take

Ny(x)=x—(Df(x)| )" f(),

where, for any linear operator 4: E— [ between two Hermitian spaces, 4"
denotes its Moore-Penrose inverse. AT=A*(4A4*)~! when 4 is onto,
which is the case considered here.

A Newton continuation method sequence (NCM sequence) is a sequence
of pairs

(fis G e (A  x(C"FH*, 0<i<k

(given a vector space E, E* denotes the set of nonzero vectors) satisfying
the conditions

and
o fir1,Co) <ayg, with associated zero  {;, 1, 0<i<g<k—1.

This last condition, we will make it precise later, implies that the projective
Newton’s sequence

xo=1{,, Xpe1=Ny  (x,), p=0,
converges quadratically towards {; ;.

The complexity of an NCM sequence ( f;, ;), 0 <i<k, is measured by k.
Upper bounds for the complexity of NCM sequences have been given by
Shub and Smale in their papers [ 7-9], about the complexity of Bézout’s
theorem. They give an upper bound, depending mainly on the degree D of
the considered system and on the condition number of the homotopy.
The case of sparse polynomial systems is studied in [2] by Dedieu; the
case of homogeneous polynomial systems by Malajovich [5] and Blum,
Cucker, Shub, and Smale in their book [1, Chap. 14], the case of multi-
homogeneous underdetermined polynomial systems by Dedieu and Shub
[3] and the case of overdetermined polynomial systems by Dedieu and
Shub [4].

Our main results here are two lower bounds for the complexity of a
NCM sequence. In the first one we relate this complexity to the degree:
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THEOREM 1. For any NCM sequence (f;,(;), 0<i<k, one has

k> ¢ max <1D;1> dr(Co. (o)

where ¢ >0 is a universal constant given below and dg((,, {;) the Rieman-
nian distance in P(C"*1) between ¢, and {,.

The Riemannian distance in P(C**1!) is defined by

[<u, v)|

el Tl

dg(u, v) =arc cos

for any u, ve (C"*1)*.
Remark 1. A direct computation shows that this bound is sharp and
this complexity is obtained for the family of systems defined by

ft,j(ZO’ Zl)"" Zn):Zgj_l(Zj_Ct,jZO)’ 1<]<n>
where {,=(1—1¢)(1,0,..,0)+#1, a4, .., a,), ae C" given.
For any f e #, let us define

2,={xe(C"*")* :rank Df(x) <m}.

In our second theorem, we give a lower bound for the complexity of
an NCM sequence in terms of the arithmetic mean of the distances of {;
from 2.

THEOREM 2. For any NCM sequence (f;,(;), 0<i<k, one has

dr($os (i)
k_l Zi'{:l dR(Ci’ Z‘ft),

k=c

where ¢ >0 is (another) universal constant.

Remark 2. This lower bound shows that the complexity of an NCM
sequence increases with the proximity of singular points. This proximity is
measured here by the arithmetic mean of the distances dg(;, 27), 1 <i<k.

COROLLARY 1. Let £¢>0 be given. For any NCM sequence (f;,(;),
0<i<k, such that

dr((i 27) <e, 1<i<k,
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we have
k> Ca_l dR(COa ik)’

with ¢ as in Theorem 2.

The proofs of these theorems are based on Smale’s alpha-theory intro-
duced by Smale in [ 10]. We use here its homogeneous version as described
in Dedieu and Shub [3]. When Df(x) is onto, we define

Dk 1/(k—1)
o) =ma (1, ) max (D] 2,
k>2 !
B x) = llx| =1 I(Df(x) ) £ (),
alf, x)=B(f, x) y(f, x).
In the definition of y( f, x), || | is the operator norm with respect to the

canonical Hermitian structure over C"*%.
These three quantities are invariant under scaling and under unitary
transformations,

*(f, x) =% (f, Ax) = *(Af, x) = *(fou, u™(x)),

with % € {a, 8, 7}, for any xe(C"*")*, 1eC*, and any unitary transfor-
mation u in C"*'. When Df(x) is not onto, we take

a f, x) = B(f, x) =y(f, x) = 0.

The following theorem [ 3, Theorem 1] justifies our definition of a NPC
sequence.

THEOREM 3. There is a universal constant og>0 with the following
property: for any homogeneous system f € #; and x € (C"*1)*, if a( f, x) < o,
then the projective Newton sequence,

Xo =X, Xpep1=Nyp(xp),
is defined and satisfies
k_
g1 =X /i I < (3)% 1 B(S, x)

for any k =0. This sequence converges to a zero { e (C"*\)* of f and

dr(C, x) <a(H)F 1 B(f x)
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with

1 2i—1
= =1.6328....
<2> 6328

oo
o=
=0

i

We can take ag=1/1317.

2. PROOFS OF THEOREMS 1 AND 2

These proofs are the consequences of the three following propositions. In
the first one we compute the minimum value of y(f, {).

ProOPOSITION 1. We have

max <1, D21> =min y( f, {),

where the minimum is taken over all pairs (¢, f)e(C"tH)* x (#,)* with

S =0.

Proof. We first prove that (D —1)/2 is a lower bound for y(f, {). We
can suppose that rank Df({)=m, since, otherwise, y(f, {) = oo. Using the
invariance properties of y( f, {) under scaling and unitary transformations,
we also can suppose that { = (1,0, ..., 0). Since f({) =0 we have

ﬁ(z)zzgi_l(ai,lzl+ +ai,nzn)+gi(z)5 1<l<m5

with degree(g;, zo) <d;—2. Let us denote by A the m xn matrix with
entries a; ;. Thus, Df({)=(0|A). The second derivative of /' =(f}, ..., /)
is given by

szi(é)=(d,-—1)< 0 A >+ng,-(c>,

AT 0,

where 4;=(a;,,..,a;,) and O, is the nxn zero matrix. Since
degree(g;, zo) <d;—2 for any ve C"*!, we have

n

DO ) =(d—1) Y, a0,

j=1
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so that

D*f({)(¢, v) = Diag(d,— 1) 45, ¥

v

n

Here Diag(d;— 1) denotes the m x m diagonal matrix with diagonal enties
d;— 1. This gives

0
(D))" D)L v) = (AT Diag(d,— 1) Aﬁ>

and, consequently,
14" Diag(d;— 1) All/2 = (D))" DA(O)/21 < (S 0.

Let us consider the matrix B= A" Diag(d;,—1) A. Let A=UXV be a
singular value decomposition of 4: U and V are unitary mxm and nxn
matrices and X' =(4|0) with 4 =Diag(s,), 6,= --- =>0,,> 0 the singular
values of 4. We have

A_l
B=V*< 0 >U*Diag(d,-—l)U(A|O)V

_ (A—IU* Dia(g);(di— 1) U4 8) v

so that the eigenvalues of B are d; —1, ..., d,,— 1 and 0. Since | B|| = p(B)
(its spectral radius), we get

IB| = A" Diag(d;,— 1) A| =D —1
and this proves the inequality

(/. {) = max <1, D2_1>

In order to prove the converse inequality, we study the example

fi(z)=z87"z, 1<i<m, 2=(Zg, s Zp),
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and we consider { = (1,0, ..., 0), so that f({) =0. The derivative of f is
given by

Df({)=(0,1,, 0,_,,),

with 71, the m xm identity matrix and O, _,, the (n—m)x(n—m) zero
matrix. The other derivatives are given by

0,0
DO, oy )= Y Tl ok,
0<l}-<nazi1"'azl’k 1 k
1</j<k
for any u!, .., u*eC"*+!, These partial derivatives are equal to 0, except

when, for some j=1---k, we have

iy= =iy =i = =i =0, i;=1.
In this case, this partial derivative is equal to (d;—1)---(d;—k <+ 1). Thus,

k

DO,y uf) = (di—1) - (di—k+ 1) ug - ud ™ "uduf™ -l
j=1
and
m k
DO ) = (X | T =1 (k1)
i=1lj=1
N 12
Xug -ud " tudud Tk >
<(D—1)-(D—k+1)
k m 1/2
S R T 1)
j=1\i=1
<(D—1)---(D—k+1) k2
when |u!l|=--- =|lu*||=1, as can be proved by induction over k>?2.
Consequently,
DH(¢) |1 1/D—1\\/&~D p_]
)P =L < _ __ -
e max | (Dr(0)l) 2 max (5 (7)) —.




SOME LOWER BOUNDS 461

using the fact that the sequence (3(2~{))Y*~1 k>2, is decreasing. This

yields y(f, {) <max(1, (D —1)/2) and achieves the proof of Proposition 1.
|

PROPOSITION 2. There is a universal constant ¢>0 with the following
property: For any fe(H)*, ¢ and xe(C'TH)*, if aff, x)<a, with
associated zero (, then

dr(&, x)y(f, O <c

Such a proposition appears in [ 10]. We give here a similar result in the
context of homogeneous systems. It is a consequence of the three following
lemmas.

Let us introduce the function

2
() = 20 —du+ 1, O<u<1—\2[.

This function is decreasing from 1 at u=0 to 0 at u=1—ﬁ/2. We
first start with a linear algebra lemma. Its proof may be found in [3,
Lemma 2a].

LemmA 1. Let X and Y be Hermitian spaces and A, B: X — Y linear
operators with B onto. If

|IBf(B—A)| <i<1
then A is onto and

1
A'B|| <—.
|4TB| <1

LeMMA 2. Let x and ye(C**1H)* be given such that Df(x)| .. is onto,
Ixl=1, and u=1|y—x| y(f,x)<1 —ﬁ/Z. Then Df(y)|,. is onto and

(1—u)?

I(Df()]e)T DF () | < 00

Proof.  Df(y)=Df(x)+ Xkz> k(D' (x)/k!)(y—x)*~" so that

DA ()
k!

(Df () )" (DF(Y)] e = Df(x)] 1) 3o k(DF(x)] 2)

k=2

(y=x)""]
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If we take the operator norm of both sides we get

IDF()] )T (DF (W)t = DFx) D) < X kp(f ) [y — x| 1

k=2

1
= E ku a

k=2 _u)z

and this number is <1 since u <1 —ﬁ/l By Lemma 1, Df(y)|,. is onto
and

1 (1—u)?

1 T Ll = - ’
1A D) e | T T e =T v

LemMma 3. Let x and {e(C"*Y)* be given such that ||x| = || =1 and
ol f, x) <agy with associated zero {. Then

y(f, x)

(£ 0) Sm’

where o and o, are the constants appearing in Theorem 3.

Proof. Since f({) =0 we have C{ = ker Df({) so that (Df({)|..)"=Df({)*
is the minimum norm right inverse of Df({). Thus,

k 1/(k—1)

(/. C)=max<1,max (Df‘(g)ki)fw >
k>2 Je!

<max<1 ma (DF(O)].)" ZfC) 1/(k1)>'

Since a( f, x) <og, Df(x)|,: is onto so that

D)
k!

kf)

(DA <IDAO)) DA | (DF) )

Let us denote u=[x—{] y(f, x). Since a(f, x) <y, by Theorem 3, we
have dg((,z) <af(f, x). Moreover, since |x||=|{[|=1, we also have
x —Cll <dg({ z) so that

u<dg(l, %) 7, ¥) Sou(f, x) Some < 1 _f,
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Thus, by Lemma 2

(1—u)?

(DA )T DF(x)|| < ()

We also have
k Dk+l
R e (x)w# =<
+I-1 _y(f, x)< !

\lg,o k'l' (f k ! HX_CHI_(I_u)ker

Thus

(1 _u)z V(f; x)k1>1/(k1)>

.0y (1 ma (S R e

k=2

and, using the inequality u < oo, we are done. ||
Proof of Proposition 2. Since aff, x)<a,, by Theorem 3, we have
dgr({, x)<ap(f, x). Using Lemma 3 we obtain

y(f, x) < T

(I —oug) (o) h (I —o0g) Y(oay)

dr(C x) (£, Q) <ap(f, x)

and we are done. ||

Our last ingredient is a corollary of the following theorem (gamma-
theorem for homogeneous polynomial systems); see [3, Theorem 2] and
[1, Chap. 14, Theorem 1] for the case m=n.

THEOREM 4. There is a universal constant y, with the following property:
let {e(C"*1)* be a zero of fe(H,)* and xe (C"*1)*. If

lx =Ll (£ O/IEIN< 7o
then the projective Newton sequence,
Xo =X, xk+1=Nf(xk)s
is defined and converges to a zero {' € (C"*1)* of f and

dp(C', x) <a(HZ V(S x).
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PROPOSITION 3. For any (e (C"*YW* and any fe (H)* such that
() =0 we have

dr(&, Z) (O =

Proof. 1If xeX, then the projective Newton sequence Xx,=x,
X +1=N,(x;) is not defined. By Theorem 4 we have necessarily

e =l (£ O/ > 7o

When {x,{> =0 then dz({, x)=n/2 and the conclusion holds. When
{x, (> #0, scaling x such that {(x—{, x> =0, we obtain

dr(x, 0) = lx=CI/IL]

and we are done. ||

Proofs of Theorems 1 and 2. Given an NCM sequence ( f;, {;), 0 <i<k,
since a( f;, 1, {;) <ay with associated zero {;, ;, we get by Proposmon 2

dr(Civ1, 8 Y(fiv1 Civr) Sc

By Proposition 1 we obtain

D—1
max <1, 2> dp(liv1,8) <c,

so that

max<1,D2_1>dR(C0,Ck)<max< >Z dr(iv1, () <ck

and this proves Theorem 1.
As previously we have

dR(Ci+1a ) V(fi+1’ Ci+1) <c

and by Proposition 3 we have

dr(&iv1s C) Yo dr(Civys me)_l Sdr(iv1s C) Y (fiv1s Gir) <e,
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so that

k—1 1k—1
dr(Co, Ci) < Z dr(Civ1 () <cpg 'k <k Z dR(Ci+192fi+l)>
i=0 i=0

this proves Theorem 2. ||
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