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1. INTRODUCTION AND MAIN RESULTS

In this note we consider the zero-finding problem for a homogeneous
polynomial system,

f : Cn+1 � Cm,

with m�n, f =( f1 , ..., fm), fi # Hdi
: the space of homogeneous polynomials

fi : Cn+1 � C with degree( f i)=d i . The well-determined (m=n) and under-
determined (m<n) cases are considered together. We also let D=max di ,
d=(d1 , ..., dm), and Hd=Hd1

_ } } } _Hdm
.

The projective Newton method has been introduced by Shub in [6] and
is defined by

Nf (x)=x&(Df (x)|x=)&1 f (x)
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when m=n, with Df (x)|x= the restriction at x= of the derivative of f at x.
Here x= denotes the space orthogonal to x in Cn+1. When m�n, we take

Nf (x)=x&(Df (x)|x=)- f (x),

where, for any linear operator A: E � F between two Hermitian spaces, A-

denotes its Moore�Penrose inverse. A-=AC (AAC)&1 when A is onto,
which is the case considered here.

A Newton continuation method sequence (NCM sequence) is a sequence
of pairs

( fi , `i) # (Hd)C_(Cn+1)C, 0�i�k

(given a vector space E, EC denotes the set of nonzero vectors) satisfying
the conditions

fi (`i)=0, 0�i�k

and

:( fi+1 , `i)�:0 , with associated zero `i+1 , 0�i�k&1.

This last condition, we will make it precise later, implies that the projective
Newton's sequence

x0=`i , xp+1=Nfi+1
(xp), p�0,

converges quadratically towards `i+1 .
The complexity of an NCM sequence ( f i , `i), 0�i�k, is measured by k.

Upper bounds for the complexity of NCM sequences have been given by
Shub and Smale in their papers [7�9], about the complexity of Be� zout's
theorem. They give an upper bound, depending mainly on the degree D of
the considered system and on the condition number of the homotopy.
The case of sparse polynomial systems is studied in [2] by Dedieu; the
case of homogeneous polynomial systems by Malajovich [5] and Blum,
Cucker, Shub, and Smale in their book [1, Chap. 14], the case of multi-
homogeneous underdetermined polynomial systems by Dedieu and Shub
[3] and the case of overdetermined polynomial systems by Dedieu and
Shub [4].

Our main results here are two lower bounds for the complexity of a
NCM sequence. In the first one we relate this complexity to the degree:
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Theorem 1. For any NCM sequence ( fi , `i), 0�i�k, one has

k�c max \1,
D&1

2 + dR (`0 , `k),

where c>0 is a universal constant given below and dR (`0 , `k) the Rieman-
nian distance in P(Cn+1) between `0 and `k .

The Riemannian distance in P(Cn+1) is defined by

dR (u, v)=arc cos
|(u, v) |
&u& &v&

for any u, v # (Cn+1)C.

Remark 1. A direct computation shows that this bound is sharp and
this complexity is obtained for the family of systems defined by

ft, j (z0 , z1 , ..., zn)=zdj&1
0 (z j&`t, jz0), 1� j�n,

where `t=(1&t)(1, 0, ..., 0)+t(1, a1 , ..., an), a # Cn given.

For any f # Hd let us define

7f=[x # (Cn+1)C : rank Df (x)<m].

In our second theorem, we give a lower bound for the complexity of
an NCM sequence in terms of the arithmetic mean of the distances of `i

from 7fi
.

Theorem 2. For any NCM sequence ( fi , `i), 0�i�k, one has

k�c
dR (`0 , `k)

k&1 �k
i=1 dR (`i , 7fi

)
,

where c>0 is (another) universal constant.

Remark 2. This lower bound shows that the complexity of an NCM
sequence increases with the proximity of singular points. This proximity is
measured here by the arithmetic mean of the distances dR (`i , 7fi

), 1�i�k.

Corollary 1. Let =>0 be given. For any NCM sequence ( fi , `i),
0�i�k, such that

dR (`i , 7fi
)�=, 1�i�k,
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we have

k�c=&1 dR (`0 , `k),

with c as in Theorem 2.

The proofs of these theorems are based on Smale's alpha-theory intro-
duced by Smale in [10]. We use here its homogeneous version as described
in Dedieu and Shub [3]. When Df (x) is onto, we define

#( f, x)=max \1, &x& max
k�2 "(Df (x)|x=)- Dkf (x)

k ! "
1�(k&1)

+ ,

;( f, x)=&x&&1 &(Df (x)|x=)- f (x)&,

:( f, x)=;( f, x) #( f, x).

In the definition of #( f, x), & & is the operator norm with respect to the
canonical Hermitian structure over Cn+1.

These three quantities are invariant under scaling and under unitary
transformations,

C( f, x)=C( f, *x)=C(*f, x)=C( fou, u&1 (x)),

with C # [:, ;, #], for any x # (Cn+1)C, * # CC, and any unitary transfor-
mation u in Cn+1. When Df (x) is not onto, we take

:( f, x)=;( f, x)=#( f, x)=�.

The following theorem [3, Theorem 1] justifies our definition of a NPC
sequence.

Theorem 3. There is a universal constant :0>0 with the following
property: for any homogeneous system f # Hd and x # (Cn+1)C, if :( f, x)�:0 ,
then the projective Newton sequence,

x0=x, xk+1=Nf (xk),

is defined and satisfies

&xk+1&xk &�&xk&�( 1
2)2k&1 ;( f, x)

for any k�0. This sequence converges to a zero ` # (Cn+1)C of f and

dR (`, xk)�_( 1
2)2k&1 ;( f, x)
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with

_= :
�

i=0 \
1
2+

2i&1

=1.6328....

We can take :0=1�137.

2. PROOFS OF THEOREMS 1 AND 2

These proofs are the consequences of the three following propositions. In
the first one we compute the minimum value of #( f, `).

Proposition 1. We have

max \1,
D&1

2 +=min #( f, `),

where the minimum is taken over all pairs (`, f ) # (Cn+1)C_(Hd)C with
f (`)=0.

Proof. We first prove that (D&1)�2 is a lower bound for #( f, `). We
can suppose that rank Df (`)=m, since, otherwise, #( f, `)=�. Using the
invariance properties of #( f, `) under scaling and unitary transformations,
we also can suppose that `=(1, 0, ..., 0). Since f (`)=0 we have

fi (z)=zdi&1
0 (ai, 1z1+ } } } +ai, nzn)+ gi (z), 1�i�m,

with degree(gi , z0)�di&2. Let us denote by A the m_n matrix with
entries ai, j . Thus, Df (`)=(0 | A). The second derivative of f =( f1 , ..., fm)
is given by

D2f i (`)=(di&1) \ 0
AT

i

Ai

On++D2gi (`),

where Ai=(ai, 1 , ..., ai, n) and On is the n_n zero matrix. Since
degree(gi , z0)�di&2 for any v # Cn+1, we have

D2f i (`)(`, v)=(di&1) :
n

j=1

ai, j vj
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so that

v1

D2f (`)(`, v)=Diag(d i&1) Av~ , v~ =\ b + .

vn

Here Diag(di&1) denotes the m_m diagonal matrix with diagonal enties
di&1. This gives

(Df (`)| `=)- D2f (`)(`, v)=\ 0
A- Diag(d i&1) Av~ +

and, consequently,

&A- Diag(d i&1) A&�2=&(Df (`)| `=)- D2f (`)�2&�#( f, `).

Let us consider the matrix B=A- Diag(di&1) A. Let A=U7V be a
singular value decomposition of A: U and V are unitary m_m and n_n
matrices and 7=(2 | 0) with 2=Diag(_i), _1� } } } �_m>0 the singular
values of A. We have

B=VC \2&1

0 + U C Diag(di&1) U(2 | 0) V

=VC \2&1UC Diag(d i&1) U2
0

0
0+ V,

so that the eigenvalues of B are d1&1, ..., dm&1 and 0. Since &B&�\(B)
(its spectral radius), we get

&B&=&A- Diag(di&1) A&�D&1

and this proves the inequality

#( f, `)�max \1,
D&1

2 + .

In order to prove the converse inequality, we study the example

fi (z)=zdi&1
0 z i , 1�i�m, z=(z0 , ..., zn),
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and we consider ` = (1, 0, ..., 0), so that f (`) = 0. The derivative of f is
given by

Df (`)=(0, Im , On&m),

with Im the m_m identity matrix and On&m the (n&m)_(n&m) zero
matrix. The other derivatives are given by

Dkfi (`)(u1, ..., uk)= :

1� j�k
0�ij�n

�kfi (`)
�zi1

} } } �zik

u1
i1

} } } uk
ik

,

for any u1, ..., uk # Cn+1. These partial derivatives are equal to 0, except
when, for some j=1 } } } k, we have

i1= } } } =ij&1=ij+1= } } } =ik=0, i j=i.

In this case, this partial derivative is equal to (di&1) } } } (di&k+1). Thus,

Dkfi (`)(u1, ..., uk)= :
k

j=1

(di&1) } } } (di&k+1) u1
0 } } } u j&1

0 u j
i u j+1

0 } } } uk
0

and

&Dkf (`)(u1, ..., uk)&=\ :
m

i=1 } :
k

j=1

(d i&1) } } } (d i&k+1)

_u1
0 } } } u j&1

0 u j
i u j+1

0 } } } uk
0 }

2

+
1�2

�(D&1) } } } (D&k+1)

_ :
k

j=1
\ :

m

i=1

|u1
0 } } } u j&1

0 u j
i u j+1

0 } } } uk
0 |2+

1�2

�(D&1) } } } (D&k+1) k�2

when &u1&= } } } =&uk&=1, as can be proved by induction over k�2.
Consequently,

&`& max
k�2 " (Df (`)| `=)- Dkf (`)

k ! "
1�(k&1)

�max
k�2 \

1
2 \

D&1
k&1 ++

1�(k&1)

=
D&1

2
,
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using the fact that the sequence ( 1
2(

D&1
k&1 ))1�(k&1), k�2, is decreasing. This

yields #( f, `)�max(1, (D&1)�2) and achieves the proof of Proposition 1.
K

Proposition 2. There is a universal constant c>0 with the following
property: For any f # (Hd)C, ` and x # (Cn+1)C, if :( f, x)�:0 with
associated zero `, then

dR (`, x) #( f, `)�c.

Such a proposition appears in [10]. We give here a similar result in the
context of homogeneous systems. It is a consequence of the three following
lemmas.

Let us introduce the function

�(u)=2u2&4u+1, 0�u�1&
- 2

2
.

This function is decreasing from 1 at u=0 to 0 at u=1&- 2�2. We
first start with a linear algebra lemma. Its proof may be found in [3,
Lemma 2a].

Lemma 1. Let X and Y be Hermitian spaces and A, B: X � Y linear
operators with B onto. If

&B- (B&A)&�*<1

then A is onto and

&A-B&<
1

1&*
.

Lemma 2. Let x and y # (Cn+1)C be given such that Df (x)|x= is onto,
&x&=1, and u=&y&x& #( f, x)<1&- 2�2. Then Df ( y)|x= is onto and

&(Df ( y)|x=)- Df (x)|x= &�
(1&u)2

�(u)
.

Proof. Df ( y)=Df (x)+�k�2 k(Dkf (x)�k !)( y&x)k&1 so that

(Df (x)|x=)- (Df ( y)|x=&Df (x)| x=) :
k�2

k(Df (x)| x=)- Dkf (x)
k !

( y&x)k&1 |x= .
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If we take the operator norm of both sides we get

&(Df (x)|x=)- (Df ( y)|x=&Df (x)|x=)&� :
k�2

k#( f, x)k&1 &y&x&k&1

= :
k�2

kuk&1=
1

(1&u)2&1

and this number is <1 since u<1&- 2�2. By Lemma 1, Df ( y)|x= is onto
and

&(Df ( y)|x=)- Df (x)|x=&�
1

1&((1�(1&u)2)&1)
=

(1&u)2

�(u)
. K

Lemma 3. Let x and ` # (Cn+1)C be given such that &x&=&`&=1 and
:( f, x)�:0 with associated zero `. Then

#( f, `)�
#( f, x)

(1&_:0) �(_:0)
,

where _ and :0 are the constants appearing in Theorem 3.

Proof. Since f (`)=0 we have C`/ker Df (`) so that (Df (`)| `=)-=Df (`)-

is the minimum norm right inverse of Df (`). Thus,

#( f, `)=max \1, max
k�2 " (Df (`)| `=)- Dkf (`)

k ! "
1�(k&1)

+
�max \1, max

k�2 " (Df (`)|x=)- Dkf (`)
k ! "

1�(k&1)

+ .

Since :( f, x)�:0 , Df (x)|x= is onto so that

" (Df (`)| x=)- Dkf (`)
k ! "�&(Df (`)| x=)- Df (x)& " (Df (x)| x=)- Dkf (`)

k ! " .

Let us denote u=&x&`& #( f, x). Since :( f, x)�:0 , by Theorem 3, we
have dR (`, z)�_;( f, x). Moreover, since &x&=&`&=1, we also have
&x&`&�dR (`, z) so that

u�dR (`, x) #( f, x)�_:( f, x)�_:0<1&
- 2

2
.
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Thus, by Lemma 2

&(Df (`)|x=)- Df (x)&<
(1&u)2

�(u)
.

We also have

" (Df (x)|x=)- Dkf (`)
k ! "� :

l�0
" (Df (x)| x=)- Dk+lf (x)

k! l ! " &x&`& l

� :
l�0

" (k+l )!
k ! l !

#( f, x)k+l&1 &x&`&l=
#( f, x)k&1

(1&u)k+1 .

Thus

#( f, `)�max \1, max
k�2 \

(1&u)2

�(u)
#( f, x)k&1

(1&u)k+1+
1�(k&1)

+
and, using the inequality u�_:0 , we are done. K

Proof of Proposition 2. Since :( f, x)�:0 , by Theorem 3, we have
dR (`, x)�_;( f, x). Using Lemma 3 we obtain

dR (`, x) #( f, `)�_;( f, x)
#( f, x)

(1&_:0) �(_:0)
�

_:0

(1&_:0) �(_:0)

and we are done. K

Our last ingredient is a corollary of the following theorem (gamma-
theorem for homogeneous polynomial systems); see [3, Theorem 2] and
[1, Chap. 14, Theorem 1] for the case m=n.

Theorem 4. There is a universal constant #0 with the following property:
let ` # (Cn+1)C be a zero of f # (Hd)C and x # (Cn+1)C. If

&x&`& #( f, `)�&`&�#0

then the projective Newton sequence,

x0=x, xk+1=Nf (xk),

is defined and converges to a zero `$ # (Cn+1)C of f and

dR (`$, xk)�_( 1
2)2k&1 ;( f, x).
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Proposition 3. For any ` # (Cn+1)C and any f # (Hd)C such that
f (`)=0 we have

dR (`, 7f) #( f, `)�#0 .

Proof. If x # 7f then the projective Newton sequence x0=x,
xk+1=Nf (xk) is not defined. By Theorem 4 we have necessarily

&x&`& #( f, `)�&`&>#0 .

When (x, `) =0 then dR (`, x)=?�2 and the conclusion holds. When
(x, `){0, scaling x such that (x&`, x) =0, we obtain

dR (x, `)�&x&`&�&`&

and we are done. K

Proofs of Theorems 1 and 2. Given an NCM sequence ( fi , `i), 0�i�k,
since :( f i+1 , `i)�:0 with associated zero ` i+1 , we get by Proposition 2

dR (`i+1 , ` i) #( f i+1 , `i+1)�c.

By Proposition 1 we obtain

max \1,
D&1

2 + dR (`i+1 , `i)�c,

so that

max \1,
D&1

2 + dR (`0 , `k)�max \1,
D&1

2 + :
k&1

i=0

dR (`i+1 , `i)�ck

and this proves Theorem 1.
As previously we have

dR (`i+1 , ` i) #( f i+1 , `i+1)�c

and by Proposition 3 we have

dR (`i+1 , ` i) #0 dR (`i+1 , 7fi+1
)&1�dR (`i+1 , `i) #( f i+1 , `i+1)�c,
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so that

dR (`0 , `k)� :
k&1

i=0

dR (`i+1 , `i)�c#&1
0 k \1

k
:

k&1

i=0

dR (`i+1 , 7fi+1
)+

this proves Theorem 2. K
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